OFFENSIVE CYBERSECURITY (EMaCS-03-05)					
DEGREE PROGRAM:		Master in Computer Science for the Human-Centric and Sustainable			
		Industry			
SEMESTER:	TYPE:	CREDITS:	WORKLOAD:	MENTORING:	
Third	Basic	5 ECTS	125 hours	0,5 hours/week	
LANGUAGE: English					

OBJECTIVES	
General	Students learn the skills necessary to perform software penetration testing and report the results effectively for all stakeholders.
Specific	 Assess the effectiveness of security controls, reveals and utilise cybersecurity vulnerabilities, assessing their criticality if exploited by threat actors.

SUSTAINABILITY

The course makes a meaningful contribution to sustainability by instilling a strong awareness of Ethical and Legal Considerations within the domain of offensive cybersecurity. By emphasizing ethical hacking principles and considering the legal implications of penetration testing, the curriculum ensures that cybersecurity practices align with principles of responsibility and sustainability. This approach promotes the ethical treatment of information systems, fostering a sustainable cybersecurity mindset that considers the broader societal and environmental impact.

RESILIENCE AND HUMAN-CENTRIC DEVELOPMENT

In terms of resilience and human-centric development, the program equips students with essential skills in Identifying and Solving Cybersecurity-Related Issues. By fostering a problem-solving mindset, the curriculum enables students to contribute to the resilience of digital ecosystems. Moreover, the emphasis on Communication, Presentation, and Reporting to Relevant Stakeholders highlights the human-centric aspect, emphasizing the importance of effective communication in the realm of offensive cybersecurity. The course also encourages a Creative and Out-of-the-Box Thinking approach, promoting adaptability and innovation in addressing evolving cybersecurity challenges. Through ethical hacking principles and a focus on people and companies' protection, the curriculum ensures a resilient and human-centric development in offensive cybersecurity practices.

SUBJECT MATTER

- Penetration testing methods and processes.
- Ethical and legal considerations.
- Testing tools and techniques.
- Reporting.

COMPETENCES

- C1. AQUIRING DATA, INFORMATION AND DIGITAL CONTENT
- C5. PROGRAMMING
- C7. PROTECTING PERSONAL DATA AND PRIVACY
- C8. PROTECTING HEALTH AND WELL-BEING
- C9. REFLECTING ON ETHICAL OUTCOMES
- C10. EXPLORATORY AND CRITICAL THINKING
- C11. PROBLEM FRAMING
- C12. IDENTIFYING NEEDS AND TECHNOLOGICAL RESPONSES
- C14. SOLVING TECHNICAL PROBLEMS
- C18. COLLABORATING THROUGH DIGITAL TECHNOLOGIES

LEARNING OUTCOMES

		•	Know about: Ethical and legal considerations of penetration testing.
Knowled	lge		Cybersecurity attack procedures.
		0	Operating systems security.

	 Computer networks security.
	 Penetration testing procedures.
	 Penetration testing standards, methodologies, and frameworks.
	 Penetration testing tools.
	 Computer systems vulnerabilities.
	 Cybersecurity recommendations and best practices.
	Acquire the ability to:
	 Identify and exploit vulnerabilities.
	 Conduct ethical hacking.
Skills	 Identify and solve cybersecurity-related issues.
SKIIIS	 Use penetration testing tools effectively.
	 Conduct technical analysis and reporting.
	 Decompose and analyse systems to identify weaknesses and
	ineffective controls.
	Be willing of the ethical hacking considering basic principles for
	protection of people and companies.
Attitudes/values	 Develop and use a creatively thinking and outside the box.
	Be aware of the need to communicate, present and report to
	relevant stakeholders.

TEACHING METHODS

Method	Class Workload	Individual Workload	Total
Theoretical Sessions	4	12	16
Laboratory Sessions	8	24	32
Assessment Report	4	69	73
Practical Examination	4	0	4
TOTAL	20 hours	105 hours	125 hours

EVALUATION

Evaluation Procedure	Percentage on the subject grade
Laboratory Assignments	20%
Assessment Report	60%
Written Examinations	20%
TOTAL	100%

PRECONDITIONS

Basics of programming (Python), Linux operating system, Virtualization

DEPARTMENT	School of ICT
LECTURERS	Jani Ekqvist
LITERATURE	To be defined later