SENSORES E ATUADORES (MASTED-01-13)					
PROGRAMA DE GRADUAÇÃO:		Mestrado em Educação Integrada STEAM (MASTED)			
SEMESTRE:	TIPO:	CRÉDITOS:	CARGA HORÁRIA:	ORIENTAÇÃO:	
Primeiro	Básico	3 ECTS	75 horas	5 horas/semana	
IDIOMA: Português/Inglês					

OBJETIVOS			
Gerais	Adquirir o conhecimento fundamental e a prática de implementar os principais tipos de sensores e atuadores usados nas tecnologias de apoio à educação STEAM.		
Específicos	 Conhecer e usar sistemas programáveis de prototipagem eletrônica rápida utilizados no apoio à educação STEAM. Conhecer e usar os principais tipos de sensores utilizados nas tecnologias de apoio à educação STEAM usando sistemas eletrônicos programáveis. Conhecer e usar os principais tipos de atuadores utilizados nas tecnologias de apoio à educação STEAM usando sistemas eletrônicos programáveis. 		

CONTEÚDO

Este curso é eminentemente prático. Os alunos devem ser capazes de consolidar o conhecimento adquirido por meio da aplicação prática dos conteúdos apresentados pelo professor em projetos reais. Incluirá tópicos sobre: Sistemas programáveis para prototipagem rápida; Tipos de interfaces de sensores e atuadores; Interfaces analógicas; Interfaces digitais; Sensores e atuadores.

COMPETÊNCIAS

- C1: Desenvolver conhecimento e compreensão em sensores e atuadores.
- C2: Desenvolver habilidades cognitivas e procedimentais avançadas associadas ao desenvolvimento e criação de conhecimento.
- C5: Desenvolver avaliações para evidenciar a aprendizagem e melhorar o processo de ensino e as práticas pedagógicas.
- C9: Integrar o conhecimento teórico adquirido ao longo do curso com a prática de campo.
- C14: Desenvolver competências digitais avançadas.
- C15: Desenvolver competências de pedagogia digital para usar, planejar e implementar novas tecnologias.

RESULTADOS DE APRENDIZAGEM Conhecimento fundamental e prático de implementação dos principais tipos Conhecimento de sensores e atuadores utilizados em tecnologias para apoiar a educação STEAM. Capacidade de criar sistemas capazes de interagir com o ambiente **Habilidades** circundante usando entradas de sensores e saídas para atuadores. Habilidade de utilizar sensores e saídas para aprimorar a educação STEAM. • Compromisso em promover a aprendizagem de todos os alunos. Disposição para examinar, discutir, questionar as próprias práticas. **Atitudes/valores** Melhoria das atitudes de pesquisa, inovação, colaboração, aprendizagem autônoma. Disposição para flexibilidade e aprendizado contínuo.

MÉTODOS DE ENSINO

As aulas serão teórico-práticas, onde pequenos projetos serão resolvidos com base nos conteúdos mencionados anteriormente. Um projeto prático de laboratório experimental permitirá que os alunos aprofundem o conhecimento adquirido em aula, em um projeto mais completo e abrangente. Os alunos serão convidados a direcionar o tema do projeto para a área de ensino na qual trabalham, alinhando aspectos visuais, mecânicos e lógicos com os temas abordados nas aulas que costumam ministrar. Eles serão incentivados a usar sua criatividade para incorporar os conteúdos do curso em sua experiência de ensino.

AVALIAÇÃO

A avaliação será realizada por meio de um projeto prático de laboratório experimental, com duas fases				
de relatórios, seguidas por uma apresentação e discussão. Cada fase terá um peso de 50% na nota final.				
PRÉ-CONDIÇÕES				
Nenhuma				
DEPARTAMENTO	Eletrônica e Instrumentação			
PROFESSORES	José Brito			
LITERATURA	Michael Shiloh, Massimo Banzi (2021). Getting Started With Arduino: The			
	Open Source Electronics Prototyping Platform, O'Reilly UK Ltd., 4th edition.			
	Francisco C. A. Alegria (2021). Sensores e Atuadores, IST Press.			
	Jonh Park and Steve Mackay (2003). Practical Data Acquisition for			
	Instrumentation and Control Systems, 1st Edition, Oxford.			